🧠
Towards Non-Invasive Hybrid Brain-Computer Interface (hBCIs)
GithubGet in touch 📮
  • Brain-Heart Tech & Beyond
  • 1. Introduction
    • 1. Motivation and Problem Statement
  • 2. Overview of Applications in Brain-Heart Dynamics
    • 2.1. Intro
    • 2.2. Enhanced Hybrid Brain-Computer Interfaces
    • 2.3. Emotion Recognition
    • 2.4. Neurofeedback and Heart Rhythm (Biofeedback) Regulation
      • 2.4.1. Sleep, Performance Enhancement, and Cognitive Health
      • 2.4.2. Stress Management, Creativity, and Clinical Applications
    • 2.5. Personalized Health Monitoring and Adaptation
    • 2.6. Neurocardiology: Cardiovascular and Neurological Disorders
    • 2.7. Adaptive Gaming and VR Experience
    • 2.8. Outro
  • 3. Overview of Models and Techniques for Emotion Recognition
    • 3.1. Datasets
    • 3.2. Existing Models and Techniques for Emotion Recognition
    • 3.3. Machine Learning Models
      • 3.3.1. Decision Trees
      • 3.3.2. Random Forest
      • 3.3.3. Light Gradient Boosting Machine (LightGBM)
      • 3.3.4. K-Nearest Neighbors
      • 3.3.5. Support Vector Machines (SVM)
      • 3.3.6. Naive Bayes
    • 3.4. Deep Learning Models
      • 3.4.1. Convolutional Neural Networks
      • 3.4.2. Long Short-Term Memory Networks (LSTM)
      • 3.4.3. Temporal Convolutional Networks
      • 3.4.4. Attention Networks
      • 3.4.5. Transformer Models
      • 3.4.6. Graph Neural Networks
  • 3.5. Generative Models and Data Augmentation
    • 3.5.1. Variational Autoencoders
    • 3.5.2. Generative Adversarial Networks
  • 3.6. Other Architectures
  • 4. Stress Detection Model with EEG-ECG
    • 4.1. Introduction
    • 4.2. Dataset Overview
    • 4.3. Data Processing and System Design
    • 4.4. Data Loading and Parsing
    • 4.5. EEG Preprocessing and Feature Extraction
    • 4.6. ECG Preprocessing and Feature Extraction
    • 4.7. Merge ECG and EEG Features for Stress Detection
    • 4.8. Model Development
    • 4.9. Results and Evaluation
  • 5. Appendix & Bibliography
    • Appendix A. Overview of Methods and Results for Emotion Recognition Studies
    • Appendix B. Visualization of Mean Power Spectral Density (PSD) Across EEG Channels
    • Appendix C. Distribution of Emotion Dimension Ratings (Valence, Arousal, Dominance) Across Target
    • Bibliography
Powered by GitBook
On this page
  1. 5. Appendix & Bibliography

Appendix B. Visualization of Mean Power Spectral Density (PSD) Across EEG Channels

PreviousAppendix A. Overview of Methods and Results for Emotion Recognition StudiesNextAppendix C. Distribution of Emotion Dimension Ratings (Valence, Arousal, Dominance) Across Target

Last updated 4 months ago